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The aim of this paper is to show that the physical principle of invariance and the condition that mechanics be 

Lagrangian make it possible to extend Klein’s conception, originally proposed for geometry, to the 

mechanics of a material point. It thus becomes possible to place the known systems of mechanics (classical 

and relativistic) on a unified theoretical basis, after proving their uniqueness, and to outline a way to 

construct new, alternative systems. 

This may prove useful for the interpretation of new experimental factors. It should be borne in mind that 

transformation groups are one of the most natural and universal tools for investigating and classifying 

fundamental phenomena in the exact sciences. As a mathematical object, groups can be studied 

theoretically in advance, independently of experimentation. Hence physical invariance principles, which 

develop Klein’s conception, may be considered to be one of the simplest and most aesthetically justified 

sources of scientific predictions with a claim to reliability. 

LOGICAL analysis of the schemes underlying the structure of classical and relativistic mechanics 
seems to imply that these systems are essentially distinct, lacking any unified basis. Nevertheless, all 
the necessary components of a unified conception of mechanics have long been available; they were 
prepared by the classicists of natural science. 

Felix Klein formulated a special conception for geometry, which envisaged the construction of 
different geometries according to a general rule. Klein’s idea was that every geometry is the theory 
of invariants of some transformation group [l]. The idea of axiomatizing an exact science, such as 
mechanics, was first proposed by Hilbert (Hilbert’s Sixth Problem). He suggested using continuous 
groups for the purpose and studying all the mathematical alternatives thus created. To Einstein goes 
the credit for his principle of relativity, which generalizes Galileo’s principle of relativity. 
Effectively, however, the group-theoretic world-view penetrated physics only after Poincare created 
relativistic dynamics. 

It was Poincare who discovered the fundamental role of the Lorentz group in physics. 
The group-theoretic approach has paved the way for important discoveries in theoretical physics. 

It was on that basis that Wigner [23 declared the priority of the principles of physical invariance over 
physical laws. Nevertheless, the idea of invariance as a justification of known models or a tool for 
setting up new models has not taken root. 

1. STATEMENT OF THE PROBLEM 

On the basis of Klein’s group-theoretic conception, we wish to construct the mechanics of a 
material point (and its possible modifications): to define the basic concepts and see how to construct 
the law governing its motion. 

The basic concepts are as follows: 
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1. A reference system [x, t] is a physical body (reference body) which has a clock at each point. 

The points of the body are arithmetized by variables x 1, x2, x3, which may be regarded as Cartesian 
coordinates. Time is arithmetized by a variable t. 

Motions relative to the reference body of the system are considered with respect to a uniform 
time, established by synchronizing the readings of the clocks in the system. 

2. Inertial reference systems are reference systems that transform into one another by transforma- 
tions in a given group, 

G,: x’= cp(x, t, 7), t’= $(x, t, 7); 
G’ 

[x’, t’] - 1x9 4 
and an isolated point at rest in any such system at some instant of time will remain at rest. 

3. An inertial motion of a material point is a motion of an isolated material point in any inertial 
reference system. 

Remark. Not every transformation group is suitable for constructing a meaningful material point. Even so, 
there are transformation groups that meet these demands and nevertheless define an inertial motion that is 
neither rectilinear nor uniform. This means that in such mechanical models Galileo’s law of inertia fails to hold; 
that is, a “stationary” inertial observer will see moving inertial reference bodies as diffuse and blurred, rather 
than solid. 

Let us assume that the following conditions hold: (a) the system of mechanics under construction 
is Lagrangian and the Lagrangian describes “pure” space-time; (b) the system is governed by the 
principle of invariance with respect to a given transformation group. 

The first condition implies that the motions of a material point in any inertial reference system are 
described by the Lagrange equations; in particular, inertial motions are described by the Lagrange 
equations with zero on the right (“covariance”). The second condition implies that the equations of 
motion in any inertial reference system must have the same Lagrangian (“invariance”). 

After the Lagrangian has been found, its law of dynamics is represented by the Lagrange 
equations in which the right-hand sides are the projections of the force acting on the point. This 
automatically yields the transformation law for the force on passing from one inertial reference 
system to another. 

Thus, the problem reduces to determining the Lagrangian. 

2. THE RESULTS 

Let us assume that an n-dimensional transformation group G,, 
space R4 = {.x1, x2, 

acting in four-dimensional real 
x3, t}, is defined by its Lie algebra A, and that the covariance and invariance 

conditions hold. Then the most general Lagrangian L is defined by the equations 

Xfr, = (Ui - d7@t)L + &+(x, tycft, i=l,...,n (2.1) 

Xiqi - Xiqi = c; qe + aiqi - aiqi + dii (2.2) 

c,Td,,, t CThdei + ciidd = ardjh + aidhi + ahdij (2.3) 

CiTa, = 0; e.j,h=l,..., n. (2.4) 

Here the operators 

i . a 
Xf=xi+SX~(t.X,X )a,,, o=1,2,3 

are extensions of the infinitesimal operators 

a i a 
Xi = t)i(t. x, r + la (‘* ‘1 ax, 

to the velocity components x,*, computed by the standard formulas 
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The set of operators Xi is a basis for the Lie algebra A, of G, : 

A,: X,,.. .9X” [Xi,Xi] =C;Xe 

where vi are arbitrary solutions of Eqs (2.2) and ai and dih are arbitrary constants satisfying Eqs 
(2.3) and (2.4). 0 ur notation employs the repeated index summation convention. 

3. SIMPLIFIED RESULT 

Let 

Proposition. Assume that: 
1. The operators Xi, . . . , X, form a basis of the ideal A4 in the algebra 

A,: [Xa,Xi] =c~~XO; OL,~= 1,. . . ,4. 

2.1fc~,.SP=0,thenSP=O;k,I,p=5 ,..., n. 
3. The group G4 that corresponds to A4 is locally transitive: /I,$: , ~1) = 4. 
Then, without loss of generality, the following Lagrangians will be valid for almost all a #O: 
If &#O, ZV#O, then XTL = (ai-dqildt)L; 
If&#O,ZV=O,thenL=O; 
If &CO, &#O, thenXTL= -(d77ildt)L+d~i*ldt; 
IfZ,=O,Z~=O,thenX,*L=d~~ldt. 
Here cpf, . . . , cp*, denote some particular solution of Eq. (2.2). 
Note that the conditions of the proposition are not necessary; neither is this the only possible 

simplification. 

Examples: Galileo and Lorentz groups. These groups contain ten parameters each and satisfy the 
above conditions. They both contain the same subgroup G,: the union of the group of motions of 
Euclidean space and the group of translations of the time t. The group G4 whose Lie algebra is the 
ideal A4 is a normal divisor of both groups, generated by the translations of coordinates and time. 

The algebra of the Galileo group contains, besides the subalgebra A7 of G7, operators 

X3=2, a a 
Xg=S--- Xl0 = c- 

l ax, ’ ax3 * 

Equations (2.1)-(2.4) h ave a unique solution (apart from an unimportant additive constant), 
which corresponds to the classical expression for the kinetic energy: LG = 1/2mv*. 

The algebra of the Lorentz group contains the following operators in addition to A7 (c denotes the 
speed of light): 

a Xl a a a x3 a x, = t -+-- 
ax1 c2 at' 

x, = I _-+2X? X 
ax2 2 at’ 

10=t-+-- 
ax, ~2 at 

Equations (2.1)-(2.4) for the Lagrangians LL , considered together with the limiting condition 
lim,, LL = LG, yield a solution which is again unique, apart from an unimportant additive 
constant-the Lagrangian for relativistic mechanics: LL = -mc*dl - v*/c* . 

Thus, the existence and uniqueness of classical and relativistic mechanics turn out to be a simple 
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corollary of the assumption that the systems are Lagrangian and invariant with respect to the 
Galileo and Lorentz groups, respectively. 

Remark. The application of invariance principles is naturally not limited to these examples. 
Meaningful mechanical models are obtained, for example, by considering conformal groups, groups 
of motions of de Sitter space and generalizations of the latter. The present author has in fact 
determined the inertial motions admitted by a conformal group [3,4], the Lagrangian for the space 
associated with de Sitter space [5]: 

L = - mC’(l +Orf)-id-, a = const 

and the broadest possible generalization (in a well-defined sense) of the latter: 

L = -mc2(l + (Yt + /3,x, + fl,.r, t /3sxa)-‘\/l - u’/c’, & = const 

(this result is published here for the first time). 
The admissible new groups need not be groups of motions of some four-dimensional Riemann 

space-time (like the Galileo group). In that case the methods of Riemannian geometry are useless, 
whereas the Klein approach is still valid. 

4. PROOFS 

Operator technique. The Lie algebra A,, and its extension to the velocity components have already been 
defined (Sec. 2). A second extension 

X#?i” z Xt + Cj(r. x. x; L) alaL 

is an extension to a new variable L. The components & are not known in advance and will be determined later. 
But there is a known rule which, given the functions 5,) will construct a third extension 

.;** = X~*+~~Fa/aPF,~=i,...,7 

to the partial derivatives of L with respect to t, x, x’. The functions & are determined by requiring that the 
differential form 

dL = P,dx, + Pa+3dx& + P,dt 

be invariant. We thus obtain an extension to the second partial derivatives. 
An extension to the components of the acceleration of the material point is constructed in the same way. 
Denote the operators, extended to all necessary variables, by Xi. 
The covariance conditions for the differential equations 

are written as 

~,(l.X,X’.L.P ,... )=O (4.1) 

xi’*, I *,=o = 0 (4.2) 

We are treating Eqs (4.1) as algebraic equations in all the variables t, x, x0, L, P, . . . . 
The invariance conditions (the Lagrangian must be the same in all inertial reference systems) may be written 

in the form 

Xl’(L - L(1, x. S’) IpL(~,x,xj = 0 (4.3) 

Derivation of the formulas of Sec. 2. Our first task is to determine the functions &, on the basis of the 
assumption that the Lagrange equations are covariant. 

To that end, following the rule, we write the latter as a system of algebraic equations 

Q’, -Pa+3,4 +"bPa+3 fl+x;P!+3 p+3 - P,=O; a.P= 1.2.3 

P 
a2L aaL a2L 

01+3.4 =-- ax-&at ’ 
P - Q+J.P - a.rhaxp’ Pcx+3,p+3=jy57 

"P 



Klein’s group-theoretic conception in mechanics of a material point 473 

We then use the covariance conditions (4.2). Simplifying, we get 

a2si 
__ =o. a2fi w=o 

aa<. an. 
aL2 a.v,a.vB ’ 

A+---L=O 
aLax& ax, 

Integrating we obtain 

dqi dq Ct. x) ri(t.I,.Y; L)=(Oi-_)L+ dt (4.4) 

where ai are arbitrary constants and Cpi are arbitrary differentiable functions. 
The commutation relations [Xi**, XT*] = cfjXz* yield the equations 

Using the easily verified commutation relation 

which is true for any function Jl(t, x), we obtain Eqs (2.4) and (2.2). The constants of integration dij must be 
such that system (2.2) is complete; they may be found in the form 

Xi(Xj9h-Xh9j)+Xj~Xh~i-X~h)+Xh(X~9j-Xj9~)=XiXjhfXjXhi+XhXij 

where Xii are the right-hand sides of Eqs (2.2). Simplifying, we obtain Eqs (2.3). Finally, the invariance 
conditions (4.3), together with (4.4), yield Eqs (2.1). 

Proof of the proposition in Sec. 3. We shall first prove that, under the assumptions of the proposition, the 
general solution of equations (2.2) may be written in the form 

9ipi’9;+XiV, -UiY,, i=l,...,n (4.5) 

where of, . . . , Q: is some particular solution and or is an arbitrary differentiable function. The proof of (4.5) is 
divided into seven simple steps. 

1. It follows from (2.4) and conditions 1 and 3 of the proposition that there exists a function p such that 
Xnp=a,,a=l ,..., 4. 

2. Let cpt, Q~, Q3, Q4 be the first four functions of an arbitrary fixed solution of Eqs (2.2), corresponding to 
the ideal A4 of A,. The existence of /_L then implies the existence of a function v such that X, v = (cpn - Q:) e- “. 
3. Replace the remaining functions Q5, . , Q,, of the fixed solution by new variables ‘ys , . . . , yn, using the 

formulasqk=(Pk*(XkV+yk);k=5,...,n. 
The equations for qk yield equations for yk: X, yk = (Xkp - ak)X, v. 
4. Put al = Xk~. Since I_L exists, the system of n equations in which it occurs is complete. This yields the 

commutation relations Xaaj = &aP = 0, which may be satisfied only by constants a,$ = const. 
5. Condition 2 and the fact that a,$ are constants imply a$ = ak. 
But then the equations for yk and condition 3 imply that yk = const. 
6. The quantities yk satisfy the equations Xk y[ - X, yk = c&y, ; k, 1, p = 5, . . . , n. Since yk = const, condition 

2 implies yk = 0. 
7. We have thus proved that all the functions cpr , which by assumption form a given solution of Eqs (2.2), can 

be written uniformly as 

9~pi9~+CpX~Yz9,~+XjY, -Uiiyl, VI = b2 

This proves formulas (4.5). They may now be used to reduce Eqs (2.1) to the form 
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Hence it follows that the general solution cpl, . . . , (pn in (2.1) may be replaced, without loss of generality, by the 
particular solution qf, . . . , c+$. 

We shall now show that, if not all the constants a vanish, we may assume that all the functions (pr, . . . , cp,* are 
constants. 

Denote these presumed constants by bi , . . . , b,. Let al #O. It then follows from Eqs (2.2) that 

xfr=c;rbc+u,bj-u,b, +‘dlf=O; i,c=2,...,n 

If bl = 0, these II - 1 equations may be used to determine all the other numbers bi. Indeed, if dii = 0, we can 
take bi = 0. If di,#O, we can find bj for all the real values of ai for which the determinant of the system does 
not vanish. Obviously, the number of values of ai for which this is impossible is at most n - 1. Thus, for almost 
all al, we have ,& = 0. 

We shall now show that the values of bi thus determined make the remaining quantities ,& = xii 1 +,,=b, vanish, 
so that they satisfy the remaining equations (2.2). We shall use Eqs (2.3), replacing dij in them by xi via the 
formulas dij = ,y$ - c; , b, - ai bj + aj bi . We claim that the numbers $ satisfy the same equations as d, : 

e 0 e e 
cijx,}, + cjhXsi+ ChiXej -a =aiX$,+ajX&+ahX$ 

Setting e = 1 in these equations, we get 
e e 

cjlXzi + cliX.oo o =a,$ (4.6) 

This is a system of homogeneous linear equations in the unknowns xt (i, j# 1). There are clearly as many 
equations in this system as there are unknowns. For those real values of al #O for which the determinant of 
system (4.6) does not vanish, we have x: = 0. At most (n- l)(n-2)/2 values of a, may fail to satisfy this 
condition. 

Examples. Considering the group of motions of Euclidean space and the group of time 

translations; which are subgroups of both Galileo and Lorentz groups, we conclude that the 
Lagrangian in both cases depends only on the velocity: L = f(v2), v2 = xi2 +x;’ +x2. 

-Galileo group. In the non-trivial case, when ai = 0, the last three equations of system (2.1) 

become 

a&T 
-=aapxj +aao, 

aLG . 

ax; 
ax’= a9p-q +a90, 

aLC 
-=alO,p$ +40,0. 

2 ax; 

Since the Lagrangian L depends only on the velocity, these equations reduce to a single equation 

2f’(uZ)=a8, =agz =a10,3=m=const 

Hence we obtain LG = +mv2 + k. The additive constant k is not essential. 

Lorentz group. The structure constants of the group are such that necessarily al = . . . = al0 = 0. 

The last three equations of the system become 

x:LL=-x;Li+>. x;LL = - x; LL +J$, dq,, XT"LL = - x;LL + -. 
lit 

Since the Lagrangian LL depends only on the velocity, these equations reduce to a single equation: 
2(c2 - v2)f’(v2) +f(v2) = b’, b’ = const. The solution LL = bodl - v21c? + b’, which also satisfies the condi- 
tion lim c-m LL = LG, is exact1 apart from an additive constant) the same as the Lagrangian LL of relativistic 
mechanics: LL = -mc2 vi375 

I wish to thank V. V. Rudyantsev, V. F. Zhuravlev, S. Ya. Stepanov, V. S. Sergeyev, G. 
Khmelevskaya-Plotnikova and J. Henrard for useful discussions on the problems treated in this 
paper. 
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Some general properties of reversible systems are studied: the nature of the stability of the trivial 

equilibrium position, the conditions for the existence of certain periodic solutions and symmetry of the 

phase portrait. It is shown that a discrete automorphism (symmetry) group generates integral manifolds. A 

detailed investigation of the stability of the trivial solution at 1: 1 resonance is presented. The necessary and 

sufficient conditions for the stability of a model system are obtained and it is shown that instability of the 

system implies instability of the complete system. 

1. SOME PROPERTIES OF REVERSIBLE SYSTEMS 

CONSIDER an autonomous system of differential equations 

dx,/dt =fs(xl,. . . ,x,) (S’ 1,2,. . . ,n) (1.1) 

with smooth right-hand sides, whose phase flow is reversible [l, p 1151: there exists a non- 
degenerate linear mapping 

M: x+x, t+-t (1.2) 

such that 

f(x)= -M-‘f(Mx) (1.3) 

f=(f,,...,fn), x=(x1 ,..., X,)EX 
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